Формула сопротивления конденсатора переменному току

Формула сопротивления конденсатора переменному току

Удобные методы онлайн-расчета сопротивления емкости C и индуктивности L переменному току с частотой F.

[Xc — сопротивление конденсатора переменному току]

Формула для расчета: Xc = 1/(2*pi*F*C), где Xc — сопротивление конденсатора переменному току в Омах, F — частота в Герцах, C — емкость в Фарадах. В таблице ниже расчет ведется по той же формуле, но в более удобных единицах — Гц, мкФ, Ом. В качестве исходных параметров можно использовать числа с плавающей запятой (запятая указывается в виде точки).

[Xl — сопротивление индуктивности переменному току]

Формула для расчета: Xl = 2*pi*F*L, где Xl — сопротивление индуктивности переменному току в Омах, F — частота в Герцах, L — индуктивность в Генри. В таблице ниже расчет ведется по той же формуле, но в более удобных единицах — Гц, мкГн, Ом. В качестве исходных параметров можно использовать числа с плавающей запятой (запятая указывается в виде точки).

[Общие замечания по использованию калькуляторов]

1. 1 микрофарад (мкф) = 1000000 пикофарад (пФ). 1 фарад (Ф) = 1000000 микрофарад (мкФ) = 10 12 пикофарад (пФ).

2. Десятичные значения с точкой нужно вводить с точкой, а не с запятой, иначе скрипт будет выдавать "infinity". Например, емкость 50 пФ следует ввести как 0.00005.

После замыкания электрической цепи начинается зарядка, после чего конденсатор сразу же становится источником тока и напряжения, в нем возникает электродвижущая сила – ЭДС. Одно из основных свойств конденсатора очень точно отражает формула емкостного сопротивления. Данное явление возникает в результате противодействия ЭДС, направленного против источника тока, используемого для зарядки. Источник тока может преодолеть емкостное сопротивление лишь путем существенных затрат его собственной энергии, которая становится энергией электрического поля конденсатора. При разрядке конденсатор вся энергия возвращается обратно в цепь, превращаясь в энергию электрического тока.

Емкостное сопротивление конденсатора

Конденсаторы относятся к наиболее распространенным элементам, используемым в различных электронных схемах. Они разделяются на типы, обладающие характерными особенностями, параметрами и индивидуальными свойствами. Простейший конденсатор состоит из двух металлических пластин – электродов, разделенных слоем диэлектрика. На каждом из них имеется собственный вывод, через который осуществляется подключение к электрической цепи.

Емкостное сопротивление можно отнести к реактивному, не вызывающему безвозвратных энергетических потерь. Зарядка конденсатора происходит до того уровня напряжения, которое отдается источником питания.

Существуют качества, присущие только конденсаторам. Например, они совершенно не пропускают через себя постоянный ток, хотя и заряжаются от него. После полной зарядки емкости, течение тока полностью прекращается, а внутреннее сопротивление устройства принимает бесконечно высокое значение.

Совершенно по-другому на конденсатор воздействует переменный ток, вполне свободно протекающий через емкость. Подобное состояние объясняется постоянными процессами зарядки-разрядки элемента. В этом случае действует не только активное сопротивление проводников, но и емкостное сопротивление самого конденсатора, возникающее как раз в результате его постоянной зарядки и разрядки.

Электрические параметры и свойства конденсаторов могут отличаться, в зависимости от различных факторов. В первую очередь они зависят от размеров и формы изделия, а также от типа диэлектрика. В разных типах устройств диэлектриком может служить бумага, воздух, пластик, стекло, слюда, керамика и другие материалы. В электролитических конденсаторах используются алюминий-электролит и тантал-электролит, что обеспечивает им повышенную емкость.

Читайте также:  Электрическая плита лысьва инструкция по применению

Названия других элементов определяются материалами обычных диэлектриков. Поэтому они относятся к категории бумажных, керамических, стеклянных и т.д. Каждый из них, в соответствии с характеристиками и особенностями, применяется в конкретных электронных схемах, с разными параметрами электротока.

В связи с этим, применение керамических конденсаторов необходимо в тех цепях, где требуется фильтрация высокочастотных помех. Электролитические устройства, наоборот, фильтруют помехи при низких частотах. Если же соединить параллельно оба типа конденсаторов, получится универсальный фильтр, широко применяемый во всех схемах. Несмотря на то, что их емкость является фиксированной величиной, существуют устройства с переменной емкостью, которая достигается путем регулировок за счет изменение взаимного перекрытия пластин. Типичным примером служат конденсаторы для подстройки, используемые при регулировке радиоэлектронной аппаратуры.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U – напряжением сети, Uc – напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Читайте также:  Вентиляция в зимней теплице

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.

Под емкостным сопротивлением понимается особый характер противодействия переменному току, наблюдаемый в цепях с электрической ёмкостью. При этом емкостное сопротивление конденсатора зависит не только от включённых в цепь элементов, но и от параметров протекающего в ней тока (смотрите рисунок ниже).

Зависимость ёмкостного сопротивления от частоты

Отметим также, что конденсатор относится к категории реактивных элементов, потери энергии на которых в цепи переменного тока не происходит.

Формула емкостного сопротивления

Для того чтобы определиться с ёмкостным сопротивлением в той или иной схеме, потребуется выявить следующие параметры:

  • Частота протекающего в цепочке переменного тока;
  • Номинальное значение ёмкости конденсатора;
  • Наличие в цепи других радиотехнических элементов.

После того, как учтены все перечисленные выше факторы, можно будет определить ёмкостное сопротивление конденсатора по следующей формуле:

Эта формула указывает на обратно пропорциональную зависимость сопротивления от величины ёмкости и частоты питающего напряжения.

Благодаря такому характеру его изменения, конденсаторы могут работать в следующих частотно-зависимых схемах:

  • Интегральные и дифференциальные устройства;
  • Резонансные цепочки различного класса;
  • Специальные фильтрующие элементы.

Добавим к этому возможность использования конденсаторов в качестве демпферных элементов в цепи переменного тока, нагруженной на мощные (силовые) агрегаты.

Векторное представление ёмкости

Для получения более чёткого представления о том, что такое ёмкостное сопротивление, можно воспользоваться векторным представлением протекающих в конденсаторе процессов.

После изучения диаграммы можно заметить, что ток в цепи конденсатора меняет фазу с опережением напряжения на 90 градусов. Из характера взаимодействия основных электрических величин делается вывод о том, что конденсатор оказывает сопротивление изменению напряжения на нём.

Чем больше ёмкость, тем медленнее происходит её перезарядка до полного напряжения (и тем меньше ёмкостное сопротивление данного элемента). Этот вывод полностью совпадает с приведённой ранее формулой.

Дополнительная информация. При исследовании включенных в цепи переменного тока индуктивностей обнаруживается обратная закономерность, когда ток, наоборот, отстаёт по фазе от изменений напряжения.

Отметим, что в обоих случаях наблюдаемые различия в фазных параметрах указывают на реактивный характер сопротивления этих элементов.

Читайте также:  Когда можно пересаживать ремонтантную клубнику осенью

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения.

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует.

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.

Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Свойства емкостей

При параллельном включении нескольких конденсаторов их ёмкости складываются между собой. При этом общее ёмкостное сопротивление (согласно рассмотренным выше формулам) уменьшается. Если же все конденсаторные элементы соединены в последовательную цепочку, их суммарная ёмкость вычисляется как обратные значения каждой из составляющей.

Ёмкостное сопротивление последовательно включенных элементов в этом случае, наоборот, увеличивается. В заключение отметим, что такой характер изменения ёмкости и импеданса объясняется свойствами конденсатора, способного накапливать заряд на своих обкладках.

Видео

Ссылка на основную публикацию
Фильтры для воды с обратным осмосом отзывы
Благодарочка 1 Благодарочка 1 Благодарочка 1 Благодарочка 1 Благодарочка 1 Теперь по обратному осмосу. Это хороший фильтр который убивает ее...
Фен бэбилисс про отзывы
Средний рейтинг Babyliss 6616E - 4,69 Всего известно о 65 отзывах о Babyliss 6616E Ищете положительные и негативные отзывы о...
Фен для волос с щеткой для объема
Красивая укладка – настоящее искусство, превращающее непривлекательную копну волос в роскошное шелковое полотно с игривым объемом. Но освоить эффектные техники...
Финик из косточки в домашних условиях фото
Наверное, каждый, кто просто обожает финики за их неповторимый вкус, мечтал бы вырастить финик из косточки в домашних условиях. Но...
Adblock detector