Электрон это элементарная частица

Электрон это элементарная частица

Название «электрон» происходит от греческого слова ήλεκτρον, означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложен [2] Дж. Дж. Стоуни (англ.) в 1894 (сама единица была введена им в 1874). Открытие электрона как частицы принадлежит Дж. Дж. Томсону, который в 1897 установил, что отношение заряда к массе для катодных лучей не зависит от материала источника. (см. Открытие электрона)

Использование

В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии и фотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители.

Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею; это является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках очень мала(

0,1-1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим ток во всей цепи устанавливается практически мгновенно.

Пучки электронов, ускоренные до больших энергий, например, в линейных ускорителях, являются одним из основных средств изучения строения атомных ядер и природы элементарных частиц. Более прозаическим применением электронных лучей являются телевизоры и мониторы с электронно-лучевыми трубками (кинескопами). Электронный микроскоп также использует способность электронных пучков подчиняться законам электронной оптики. До изобретения транзисторов практически вся радиотехника и электроника были основаны на вакуумных электронных лампах, где применяется управление движением электронов в вакууме электрическими (иногда и магнитными) полями. Электровакуумные приборы продолжают ограниченно использоваться и в наше время; наиболее распространённые применения — магнетроны в генераторах микроволновых печей и вышеупомянутые электронно-лучевые трубки в телевизорах и мониторах.

Электрон как квазичастица

Если электрон находится в периодическом потенциале, его движение рассматривается как движение квазичастицы. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором.

Электрон и Вселенная

Известно [3] , что из каждых 100 нуклонов во Вселенной, 87 являются протонами и 13 — нейтронами (последние в основном входят в состав ядер гелия). Для обеспечения общей нейтральности вещества число протонов и электронов должно быть одинаково. Плотность барионной (наблюдаемой оптическими методами) массы, которая состоит в основном из нуклонов, достаточно хорошо известна (один нуклон на 0,4 кубического метра) [4] . С учётом радиуса наблюдаемой Вселенной (13,7 млрд световых лет) можно подсчитать, что число электронов в этом объёме составляет

Электрон в произведениях мировой культуры

Известное стихотворение Валерия Брюсова «Мир электрона» было написано 13 августа 1922 г. [1]. Его первое четверостишие:

Быть может, эти электроны
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!

Примечания

  1. Фундаментальные константы, утверждённые NIST.
  2. Stoney, G. Johnstone, «Of the ‘Electron,’ or Atom of Electricity». Philosophical Magazine. Series 5, Volume 38, p. 418—420 October 1894.
  3. Richard N. BoydBig bang nucleosynthesis // Nuclear Physics A. — 2001. — Т. 693. — № 1-2. — С. 249-257.
  4. ASTROPHYSICAL CONSTANTS AND PARAMETERS

Литература

  • Все известные свойства электрона систематизированы в обзоре Particle Data Group [2].

См. также

Электрон | Позитрон | Фотон
Аномальный магнитный дипольный момент
Позитроний

Лептоны: Электрон • Позитрон • Мюон • Тау-лептон • Нейтрино

Калибровочные бозоны Фотоны • W- и Z-бозоны • Глюоны До сих пор не обнаружены Бозон Хиггса • Гравитон • Другие гипотетические частицы

Wikimedia Foundation . 2010 .

Смотреть что такое "Электрон (частица)" в других словарях:

ЭЛЕКТРОН (частица) — ЭЛЕКТРОН (е, е ), частица, принадлежащая к классу лептонов (см. ЛЕПТОНЫ), носитель наименьшей известной массы и наименьшего электрического заряда (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД). Открыт в 1897 г. английским ученым Дж. Дж. Томсоном (см. ТОМСОН Джозеф… … Энциклопедический словарь

Электрон (физич.) — Электрон (символ е , e), первая элементарная частица, открытая в физике; материальный носитель наименьшей массы и наименьшего электрического заряда в природе. Э. ‒ составная часть атомов; их число в нейтральном атоме равно атомному номеру, т. е.… … Большая советская энциклопедия

Электрон (квазичастица) — Электрон Символ Масса 9,10938215(45)×10−31кг, 0,510998910(13) МэВ/c2 Античастица позитрон Классы фермион, лептон … Википедия

Электрон (физич.) — Электрон Символ Масса 9,10938215(45)×10−31кг, 0,510998910(13) МэВ/c2 Античастица позитрон Классы фермион, лептон … Википедия

ЭЛЕКТРОН — (символ е , е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

Частица — горячая частица атом или свободный радикал с энергией, значительно превосходящей тепловую энергию окружающих молекул. ионизирующая частица частица, кинетическая энергия которой достаточна для ионизации атома или молекулы при столкновении.… … Термины атомной энергетики

частица — крупица, капля, капелька, кроха, крошка, малая толика, искра, крупинка, корпускула, соринка, крохотулька, чуточка, частичка, пылинка, доля, крошечка, крохотка; микроагрегат; артикль Словарь русских синонимов. частица капля, капелька, крупица,… … Словарь синонимов

Электрон — (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

ЭЛЕКТРОН — (е е ), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… … Большой Энциклопедический словарь

ЭЛЕКТРОН — (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

Открытие «невидимых» элементарных частиц положило начало современной физике. В ней всё время совершаются новые грандиозные прорывы: например, подтвердилось существование бозона Хиггса. Знать, что такое лептоны, кварки и бозоны, очень важно для понимания актуальной картины мира. Мы собрали базовые знания по физике элементарных частиц, которые пригодятся всем.

В конце XVIII — начале XIX века физики были твердо убеждены, что в их науке больше нечего исследовать и никаких прорывов в ней не предвидится. Однако прошло всего полвека, и в научных журналах стали появляться статьи, описывавшие необъяснимые результаты экспериментов. То Рентген откроет лучи, которые проникают через стекло и отклоняются в магнитном поле, то Беккерель засветит фотопластинку минералом урана… Эти явления заставили людей задуматься о том, что атомный мир намного сложнее, чем они думали.

Читайте также:  Основные принципы работы тэс

Самой первой частицей, о которой узнали физики, стал электрон . Это понятие ввел еще в конце XIX века британский ученый Джордж Стоуни, чтобы описать перенос заряда в электрохимических процессах. А в 1897 году Джозеф Томсон, исследуя «катодные лучи», выяснил, что они состоят из частиц, обладающих также и волновыми свойствами.

Свойства волны и частицы во многом противоположны. Например, частица, ударяясь о препятствие, отскакивает, а волна может его огибать. Показателен в этом плане эксперимент Томаса Юнга, в котором ученый пропускал свет через две узкие щели. Казалось бы, если фотоны (еще одна элементарная частица, квант света) — это частицы, то они должны проходить через щель и оставлять на экране за ней две полосы. Но оказалось, что полос гораздо больше! Всё это легко объяснимо, если принять, что фотон — это волна, а волнам свойственно огибать препятствия (это явление называется дифракцией). Как рябь на воде огибает камень, так и электромагнитные волны могут «обходить» встречающиеся на их пути преграды.

Какие бывают элементарные частицы

После открытия электрона ученые ввели в картину мира фотон и остальные бозоны , дополнили список лептонов и открыли кварки .

С каждым витком развития науки люди стремились поделить вещество на мельчайшие части, чтобы понять, как оно устроено. Оказалось, что вся материя, которая нас окружает, похожа на матрешку с четырьмя оболочками:

  • то, что мы видим невооруженным глазом;
  • молекулярная структура;
  • атомная структура;
  • элементарный уровень.

Последняя «оболочка» была открыта не так давно и на данный момент считается самой маленькой. Она включает в себя все элементарные или фундаментальные частицы.

Да, их очень много но так даже интереснее. Со времен открытия электрона ученые обнаружили огромное количество фундаментальных частиц и разделили их на две большие группы: фермионы (от фамилии итальянского физика Энрико Ферми) и бозоны (в честь индийского физика Сатьендры Нат Бозе).

Все частицы Стандартной модели, собранные в подобие системы Менделеева. Справа — бозоны, слева — фермионы

Элементарные частицы, в отличие от атомов, — это не всегда реально существующие объекты. Это, скорее, модели, созданные для описания разных видов взаимодействий и свойств материи.

Например, электромагнитное взаимодействие передается с помощью фотонов, ядро атома находится в стабильном состоянии благодаря мезонам — частицам, удерживающим протоны и нейтроны.

Физики выделяют разные виды взаимодействий (сильное, слабое, электромагнитное, гравитационное) и типы материи (атомы, антиматерия, темная материя, излучения). Чтобы изучить их свойства, нужно подробно описать их природу.

Во второй половине ХХ века группа ученых создала теорию под названием «Стандартная модель». Она помогла систематизировать большое количество открытых на тот момент элементарных частиц и соотнести каждую со своим видом материи или взаимодействия. Сейчас эта теория считается завершенной и включает 17 видов элементарных частиц, вместе описывающих 3 фундаментальных взаимодействия и некоторую часть известных видов материи. Однако Стандартная модель описывает далеко не всё. Например, в ее рамках нельзя описать силу гравитации, и ученые до сих пор ломают голову над тем, как бы ее объяснить.

Чтобы разобраться в мире элементарных частиц, мы расскажем обо всех 17 частицах Стандартной модели, разделив их на две большие группы: фермионы и бозоны.

I. Фермионы

В этот класс входят 12 обычных частиц и столько же античастиц. Они противоположны по заряду: например, античастица отрицательно заряженного электрона — это положительно заряженный позитрон.

Эти 12 частиц, в свою очередь, можно поделить на две группы по 6 штук: кварки и лептоны.

Как устроен атом

Атом состоит из ядра, в котором сосредоточено более 99 % его массы, и электронной оболочки, окружающей его, как облако. Электроны, составляющие внешнюю оболочку, — это элементарные частицы. Ядро же состоит из протонов и нейтронов (вместе они называются нуклонами). Протоны заряжены положительно, чтобы компенсировать отрицательный заряд электронов на внешней оболочке, а нейтроны, как следует из названия, вообще не имеют заряда и «склеивают» ядро, не давая ему распасться (как это происходит с радиоактивными элементами).

Долгое время протоны и нейтроны считались неделимыми, но они слишком большие для элементарных частиц. Позже ученые установили, что каждая из них состоит из трех кварков.

Кварки — любители ходить в парах

В отличие от электронов кварки не могут существовать в свободном состоянии и соединяются в пары. Эти пары называются мезонами — это частицы, которые перемещаются между протонами и нейтронами и удерживают ядро в стабильном состоянии. Три кварка образуют нуклоны — протон или нейтрон. Частицы, состоящие из четырех или пяти кварков, являются экзотическими и отчасти вызывают гравитационное взаимодействие между телами.

Лептоны — одиночки

Второй тип фермионов — лептоны , их свойства совершенно другие. Кварки не могут существовать поодиночке, а лептоны, наоборот, не могут соединяться (если это, конечно, не частица со своей античастицей: объединяясь, они исчезают, выделяя энергию).

Лептоны похожи на волков-одиночек, и самый влиятельный и могущественный среди них (прямо как волк с Уолл-стрит) — электрон, самый распространенный и наиболее изученный лептон.

Долгое время ученые не могли понять, в чем «сила» электрона. В конце концов они нашли этому одно разумное объяснение: электрон — это единственная стабильная заряженная частица из своего класса. Остальные 5 заряженных лептонов не существуют дольше 2 микросекунд: они либо распадаются на несколько более мелких частиц, либо, наоборот, соединяются в одну более крупную.

Нейтрино — неуловимые лептоны

Еще один вид лептонов — нейтрино, практически неуловимые частицы, которые движутся в космосе со скоростью света. Еще с середины ХХ века проводятся эксперименты, чтобы их поймать и изучить. Многое в этих «неуловимых» частицах уже исследовано, и ученые даже пытались создать коммуникацию с их помощью, но идея осталась лишь в планах. Нейтрино могут быть индикаторами различных процессов, происходящих в ядрах звезд. Например, в нашем Солнце протекает множество термоядерных реакций каждую секунду, и практически каждая такая реакция выделяет хотя бы одно нейтрино.

Нейтрино бывают нескольких видов: электронное, мюонное и тау-нейтрино. Все эти названия взяты не с потолка.

Каждое нейтрино соответствует своему лептону (электрону, мюону, тау-лептону), так как напоминает его по своим квантовым характеристикам. Разные виды этих частиц, двигаясь совместно, могут переходить друг в друга — это называется нейтринной осцилляцией.

Итак, фермионы бывают двух видов: кварки и лептоны. Первые могут существовать только группами, а вторые — только по отдельности. Первые входят в состав ядер атомов, вторые — в состав электронных оболочек этих атомов.

А теперь мы переходим ко второй, не менее интересной группе элементарных частиц — бозонам. Готовы спорить, что она у вас на слуху благодаря одному известному ее представителю.

II. Бозоны

Невольно возникает вопрос: а чем фермионы отличаются от бозонов? Всё дело в квантовой характеристике — спи́не. У фермионов он дробный: чтобы при повороте в пространстве частица стала симметричной себе, надо повернуть ее больше чем на один полный оборот. А у бозонов спин целый — то есть либо они одинаковы, как ни крути, либо для совмещения самих с собой в пространстве их нужно повернуть на 180 или 360 градусов.

Читайте также:  Тип челнока качающийся что это

Спин обуславливает обменное взаимодействие элементарных частиц, когда между двумя одинаково заряженными частицами может возникать связь (это свойство исчезает при переходе к большим системам). Если по законам классической механики два электрона должны отталкиваться, то квантовая механика «разрешает» им находиться относительно близко друг от друга — на одной орбитали.

Траектории движения элементарных частиц, образующихся в результате столкновения двух протонов

Бозоны, слава богу, не делятся ни на какие группы. В Стандартной модели их выделяют всего пять: фотон, W-бозон, Z-бозон, глюон и бозон Хиггса. С фотоном мы уже знакомы, его функция — переносить электромагнитное возбуждение (то есть свет разного диапазона длин волн). W- и Z-бозоны — это своего рода волшебные палочки. W-бозоны переносят электрический заряд, понижая или повышая его у выбранной цели, и могут превращать один вид кварков в другой. Z-бозоны помогают передавать импульс и спин от одной частицы к другой при их столкновении.

Выделяют 8 типов глюонов.

Глюоны напоминают кварки и фотоны одновременно: их никогда не видели в свободном состоянии, они не имеют заряда и в теории не обладают массой. Глюоны отвечают за передачу между кварками квантовой характеристики, называемой цветом (общее с теми цветами, которые мы видим, — только название).

Последний тип — бозоны Хиггса — очень странная вещь. Они существовали лишь теоретически, их долго не могли обнаружить, однако в 2012 году это удалось сделать с помощью Большого адронного коллайдера (БАК).

Бозон Хиггса обуславливает массы всех элементарных частиц. Его открытие завершило Стандартную модель.

Она описывает 3 вида взаимодействий: электромагнитное, сильное (между нуклонами в ядре атома) и слабое, но ее нельзя считать Теорией всего, так как она не описывает, например, гравитационное взаимодействие, темную материю и энергию. Так что у физики большое и светлое будущее.

Итак, бозоны переносят различные виды взаимодействий. Они имеют целочисленный спин и различаются между собой массой и свойствами. Существование всех этих частиц ученые уже доказали с помощью БАК.

Составные частицы

Фермионы и бозоны — это лишь основа всей физики элементарных частиц. Соединяясь, они образуют что-то вроде молекул. Это очень похоже на химическую реакцию: две элементарные частицы могут соединяться друг с другом, как и химические вещества.

Самый известный вид составных частиц — адроны. Их делят на два вида: барионы и мезоны. Барионы — это частицы, состоящие из кварков, в том числе протоны и нейтроны; мезоны переносят взаимодействие между нуклонами в ядрах атомов.

Физика элементарных частиц невероятно разнообразна. Кроме перечисленных основных классов выделяют также квазичастицы («почти»-частицы), которые формально не существуют: человек придумал их для описания различных природных процессов. Кроме того, есть много гипотетических частиц, существование которых экспериментально не подтверждено.

Сегодня мы знаем Вселенную едва ли на 0,1 %. С помощью физики мы пытаемся расширить границы познания и описать всё, что нам непонятно. Но каждый новый шаг вперед всё труднее: если пять лет назад вы были на острие прогресса и понимали всё, что происходит в вашей науке, то сегодня она вас озадачит своей сложностью и запутанностью.

Однако сложность добавляет физике прелесть и очарование, которое притягивает новые пытливые умы. С помощью них мы, быть может, скоро создадим Теорию всего и постигнем все тайны мироздания.

А потом природа преподнесет нам сюрприз, и окажется, что всё, что мы знали, — полная туфта.

Заряд электрона неделим и равен −1,602176565(35)·10 −19 Кл [1] (или −4,80320427(13)·10 −10 ед. заряда СГСЭ в системе СГСЭ или −1,602176565(35)·10 −20 ед. СГСМ в системе СГСМ); он был впервые непосредственно измерен в экспериментах (англ.) А. Ф. Иоффе (1911) и Р. Милликена (1912). Эта величина служит единицей измерения электрического заряда других элементарных частиц (в отличие от заряда электрона, элементарный заряд обычно берётся с положительным знаком). Масса электрона равна 9,10938291(40)·10 −31 кг. [1]

кг [1] — масса электрона.

Кл [1] — заряд электрона.

Кл/кг [1] — удельный заряд электрона.

— спин электрона в единицах

Согласно современным представлениям физики элементарных частиц, электрон неделим и бесструктурен (как минимум до расстояний 10 −17 см). Электрон участвует в слабом, электромагнитном и гравитационном взаимодействиях. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц — его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1/2, и, таким образом, электрон относится к фермионам. Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент. Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака). В этом случае отрицательно заряженный электрон называют негатроном, положительно заряженный — позитроном. [источник не указан 120 дней]

Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы электрона.

Свободный электрон не может поглотить фотон, хотя и может рассеять его (см. эффект Комптона).

Этимология и история открытия

Название «электрон» происходит от греческого слова ἤλεκτρον , означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложен [4] Дж. Дж. Стоуни (англ.) в 1894 (сама единица была введена им в 1874). Открытие электрона как частицы принадлежит Э. Вихерту [5] [6] и Дж. Дж. Томсону, который в 1897 установил, что отношение заряда к массе для катодных лучей не зависит от материала источника. (см. Открытие электрона)

Открытие волновых свойств [7] . Согласно гипотезе де Бройля (1924), электрон (как и все другие материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами. Де-бройлевская длина волны нерелятивистского электрона равна , где — скорость движения электрона. В соответствии с этим электроны, подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства электронов были экспериментально обнаружены в 1927 американскими физиками К. Дэвиссоном и Л. Джермером (Опыт Дэвиссона — Джермера) и независимо английским физиком Дж. П. Томсоном.

Использование

В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии и фотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители.

Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею; это является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках очень мала (

Читайте также:  Строим дома из кирпича под ключ цена

0,1—1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим ток во всей цепи устанавливается практически мгновенно.

Пучки электронов, ускоренные до больших энергий, например, в линейных ускорителях, являются одним из основных средств изучения строения атомных ядер и природы элементарных частиц. Более прозаическим применением электронных лучей являются телевизоры и мониторы с электронно-лучевыми трубками (кинескопами). Электронный микроскоп также использует способность электронных пучков подчиняться законам электронной оптики. До изобретения транзисторов практически вся радиотехника и электроника были основаны на вакуумных электронных лампах, где применяется управление движением электронов в вакууме электрическими (иногда и магнитными) полями. Электровакуумные приборы (ЭВП) продолжают ограниченно использоваться и в наше время; наиболее распространённые применения — магнетроны в генераторах микроволновых печей и вышеупомянутые электронно-лучевые трубки (ЭЛТ) в телевизорах и мониторах.

Электрон как квазичастица

Если электрон находится в периодическом потенциале, его движение рассматривается как движение квазичастицы. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором.

Электрон и Вселенная

Известно [8] , что из каждых 100 нуклонов во Вселенной, 87 являются протонами и 13 — нейтронами (последние в основном входят в состав ядер гелия). Для обеспечения общей нейтральности вещества число протонов и электронов должно быть одинаково. Плотность барионной (наблюдаемой оптическими методами) массы, которая состоит в основном из нуклонов, достаточно хорошо известна (один нуклон на 0,4 кубического метра) [9] . С учётом радиуса наблюдаемой Вселенной (13,7 млрд световых лет) можно подсчитать, что число электронов в этом объёме составляет

См. также

Примечания

  1. 12345678http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants — Complete Listing
  2. H. O. Back et al. Search for electron decay mode e → γ + ν with prototype of Borexino detector // Phys. Lett. B. — 2002. — Т. 525. — С. 29-40. — DOI:10.1016/S0370-2693(01)01440-X
  3. Также то же, что и электрум: «янтарного цвета сплав золота (80 %) с серебром (20 %)» (Черных П. Я. Историко-этимологический словарь).
  4. Stoney, G. Johnstone, «Of the ‘Electron,’ or Atom of Electricity». Philosophical Magazine. Series 5, Volume 38, p. 418—420 October 1894.
  5. Wiechert E. // Schriften d. phys.-ökon. Gesell. zu Königsberg in Pr. 1897. 38. Jg. № 1. Sitzungsber. S. 3-16.
  6. Быков Г. В. К истории открытия электрона // Вопросы истории естествознания и техники. 1963. Вып. 15. С. 25-29.
  7. БСЭ
  8. Richard N. BoydBig bang nucleosynthesis // Nuclear Physics A. — 2001. — Т. 693. — № 1-2. — С. 249-257.
  9. ASTROPHYSICAL CONSTANTS AND PARAMETERS

Литература

  • Все известные свойства электрона систематизированы в обзоре Particle Data Group [1] (англ.) .
Квантовая электродинамика п ·Позитрон | Фотон
Аномальный магнитный момент
Позитроний
Элементарные частицы
Фермионы
Кварки u · d · c · s · t · b
Лептоны e − · e + · μ − · μ + · τ − · τ + · νe · ν e · νμ · ν μ · ντ · ν τ
Бозоны
Калибровочные бозоны γ · g · W-бозон · Z-бозон бозоны Хиггса H 0 Другие Ду́хи Гипотетические
Суперпартнёры
Гейджино Чарджино · Глюино · Гравитино · Нейтралино Другие Аксино · Хиггсино · Сфермион Другие A 0 · Дилатон · G · J · Тахион · X · X (4140)
Y · W’ · Z’ · Стерильное нейтрино Составные частицы
Адроны
Барионы / Гипероны Нуклоны ( p · p · n · n ) · Δ · Λ · Σ · Ξ · Ω Мезоны / Кварконии π · ρ · η · η′ · φ · ω · J/ψ · ϒ · θ · K · B · D · T Другие Атомные ядра · Атомы · Экзотические атомы (Позитроний · Мюоний · Кварконий) · Молекулы Гипотетические
Экзотические адроны
Экзотические барионы Дибарион · Пентакварк Экзотические мезоны Глюбол · Тетракварк Другие Мезонная молекула · Померон Квазичастицы Солитон Давыдова · Экситон · Биэкситон · Магнон · Фонон · Плазмон · Поляритон · Полярон · Примесон · Ротон · Биротон · Дырка · Электрон · Куперовская пара · Орбитон · Трион · Фазон · Флуктуон · Энион · Холон и спинон Списки Список частиц · Список квазичастиц · Список барионов · Список мезонов · История открытия частиц

Wikimedia Foundation . 2010 .

Смотреть что такое "Электрон" в других словарях:

Электрон (КА) — У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель … Википедия

Электрон — (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок … Каталог отелей

ЭЛЕКТРОН — (символ е , е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

Электрон — (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 … Каталог отелей

Электрон — (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

ЭЛЕКТРОН — (е е ), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… … Большой Энциклопедический словарь

ЭЛЕКТРОН — (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

электрон — сущ., кол во синонимов: 12 • дельта электрон (1) • лептон (7) • минерал (5627) • … Словарь синонимов

ЭЛЕКТРОН — искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов … Большой Энциклопедический словарь

ЭЛЕКТРОН — ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… … Толковый словарь Ушакова

ЭЛЕКТРОН — ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Ссылка на основную публикацию
Электрические провода под старину
Некоторое время назад именно так и делалась проводка — к стене прибивались изоляторы, к ним крепились витые провода. Потом пошла...
Шуруп для половой доски
Данный тип саморезов имеет особый вид острия в виде фрезы и малогабаритную потайную головку со шлицем TORX, специальное антифрикционное смазывающее...
Шуруповерт makita 6347d цена
Makita 6347D Подробные характеристики Общие характеристики Тип инструмента безударная дрель-шуруповерт Тип патрона быстрозажимной Количество скоростей работы 2 Питание от аккумулятора...
Электрические схемы управления асинхронных двигателей
Типовые схемы релейно-контакторного управления асинхронными двигателями (АД) строятся по тем же принципам, что и схемы управления двигателями постоянного тока. Типовые...
Adblock detector