Пме 211 схема подключения для чайников

Пме 211 схема подключения для чайников

Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

Магнитный пускатель и магнитный контактор

Отличие между магнитным пускателем и магнитным контактором в том, какую мощность нагрузки могут коммутировать эти устройства.

Магнитный пускатель может быть «1», «2», «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:

Названия пускателей расшифровываются следующим образом:

  • Первый знак П — Пускатель;
  • Второй знак М — Магнитный;
  • Третий знак Е, Л, У, А… — это тип или серия пускателя;
  • Четвертый цифровой знак — величина пускателя;
  • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

Некоторые характеристики магнитных пускателей можно посмотреть в таблице

Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:

Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов на включение могут размещаться в рабочих зонах пользователя.
На схеме пускатель и контактор обозначаются таким схематичным знаком:

где A1-A2 катушка электромагнита пускателя;

L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

13-14 контакты, блокирующие пусковую кнопку управления двигателем.

Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

Стандартная схема коммутации магнитных пускателей

Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1». Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются , после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

Схема коммутации магнитных пускателей через кнопочный пост

Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

Читайте также:  Как заделать дырки в вагонке от сучков

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Коммутационная аппаратура помогает обеспечивать удобство и безопасность эксплуатации практически всего электрооборудования, как в бытовой, так и в промышленной сети. Кнопки пуска и обычные клавишные модели выключателей позволяют обеспечивать подачу электроэнергии к нужному потребителю. Однако силовое электрооборудование существенно отличается от линейных потребителей, из-за скачка пускового тока и сам прибор, и коммутатор подвергаются существенному воздействию токовой нагрузки. Поэтому для электрических машин, крупных промышленных предприятий и специального оборудования применяется электромагнитный пускатель.

Устройство и принцип действия

Конструктивно электромагнитный пускатель представляет собой электромеханическое устройство, в котором при подаче напряжения на рабочий элемент возникает физическое перемещение контактной группы из одной позиции в другую. Вариант простейшего устройства электромагнитного пускателя приведен на рисунке ниже:

Рис. 1. Устройство электромагнитного пускателя

Как видите, данный образец состоит из:

  • подвижных контактов – предназначены для перемещения в пространстве, обеспечивая разрыв в магнитном пускателе;
  • неподвижных контактов – осуществляют токосъем для передачи электроэнергии от внешней сети к трехфазному двигателю;
  • контактных пружин – предназначены для возвратного сбрасывания блока контактов в исходное положение при отключении пускателя;
  • магнитопровода из электромагнитной стали – состоят из подвижного и неподвижного сердечника служит для передачи силовых линий магнитной индукции от катушки электромагнита до стали подвижных контактов.
  • соленоида — предназначена для формирования магнитного потока внутри витков за счет протекания электрического тока, как правило, имеет отдельные выводы для питания.

Принцип действия электромагнитного пускателя

Как видите на рисунке, принцип действия условно можно разобрать на двух положениях. В изначальном состоянии электромагнитный пускатель обесточен, в трехфазной электрической цепи отсутствует ток по причине наличия разрыва. Но, как только на катушку будет подано напряжение, в ее цепи сразу начнет протекать электроток, мощный электромагнит создает достаточный поток для преодоления сердечником воздушного промежутка. В результате перемещения контакты замыкаются, и к электрическому двигателю подается напряжение, происходит запуск электрической машины.

Работа продолжается до тех пор, пока не будет нажат кнопка стоп, выключатель или оператор в любой другой способ не прекратит подачу питания на катушку электромагнитного пускателя. После этого силовые контакты сразу разомкнуться и питание потребителя будет прекращено. Также отключение может происходить в случае перегрузки или при возникновении аварийного режима в питаемом оборудовании от срабатывания тепловой или электромагнитной защиты.

Назначение

Основным назначением электромагнитных пускателей является пуск и длительное электроснабжение синхронных и асинхронных электродвигателей, питаемых по трехфазной схеме. Дополнительно их комплектуют вспомогательными контактами, которые могут управлять вспомогательными цепями.

Читайте также:  Как сделать байпас для стабилизатора

Но благодаря простоте устройства и неприхотливости в эксплуатации электромагнитный коммутатор также используется для включения и отключения систем освещения, конвейерного оборудования, крановых установок, системами обогрева и прочих устройств.

Разновидности и типы

В зависимости от конструктивных особенностей и выполняемых функций электромагнитные пускатели подразделяются на несколько категорий. Наиболее актуальные принципы разделения по видам и типам мы и рассмотрим.

По типу питаемой нагрузки:

  1. ПМЛ – применяется для трехфазных электродвигателей с короткозамкнутым ротором или печного отопления;
  2. ПМА – используется для подключения асинхронных электрических машин;
  3. КМИ – применяется для пуска трехфазной нагрузки, имеет схожие характеристики с первым вариантом, но существенно более широкий функционал;
  4. ПМЕ – используется для реверсивного пуска электрических машин асинхронного типа.

По номиналу, при котором могут размыкаться и замыкаться силовые контакты электромагнитные пускатели подразделяются на четыре категории:

  • Первой – для нагрузки в пределах от 10 до 16А;
  • Второй – питаемые нагрузку до 25А;
  • Третей – для электрических машин с номиналом до 40А;
  • Четвертый – для включения и отключения трехфазных двигателей на 63А.

Таким же образом электромагнитные пускатели могут разделяться на категории 24В, 220В, 380В, 660В и т.д. Напряжение соответствует питающему номиналу, чтобы фактическое значение было не выше допустимого для конкретного коммутатора.

В зависимости от места размещения выделяют разную категорию защищенности пускателя от проникновения пыли и влаги, которая маркируется буквами IP и двумя цифрами. На практике, чем больше числовое значение, тем выше устойчивость к факторам.

Различают такие типы:

  • Открытого – для монтажа исключительно в шкафы, ящики и т.д.;
  • Защищенного – в помещениях с минимальным количеством пыли и низкой вероятностью проникновения влаги;
  • Пыле- влагозащищенного – могут монтироваться для размыкания и замыкания силовых цепей на улице.

По коммутационной износостойкости различают три категории:

  • А – самая высокая устойчивость контактов к изнашиванию при подключении магнитных устройств;
  • Б – средняя изнашиваемость;
  • В – низкий уровень износоустойчивости.

Правила монтажа

При подключении магнитного пускателя важно обращать внимание на поверхность или элемент, к которому планируется производить крепление. Нарушение правил монтажа может привести к ложным отключениям в последующем, возникновению шумовых эффектов и прочих неприятностей.

В щитках, шкафах, ящиках вы должны подобрать ровную плоскую поверхность, расположенную в вертикальной плоскости. Место установки должно иметь надежную, жесткую фиксацию в пространстве. Запрещается устанавливать электромагнитные пускатели в местах сильного нагрева, подверженных ударам, толчкам и прочим механическим воздействиям.

Для уменьшения механической нагрузки от кабеля на контактные группы, проводник нужно изогнуть в кольцо или П-образно. Такой же прием используется для дополнительных контактов.

Перед вводом в эксплуатацию обязательно производится осмотр конструктивных элементов на предмет выявления повреждений. Проверяется правильность подключения, маркировка и последовательность.

Схемы подключения

На практике могут применяться различные схемы включения электромагнитных коммутаторов. Поэтому для начала рассмотрим простейший вариант.

Рис. 4. Простейшая схема включения электромагнитного пускателя

Как видите на рисунке, подключение электромагнитного пускателя производится на линейное напряжение между фазами B и C. Питание осуществляется через предохранитель PU, который разорвет и обесточит цепь в аварийном режиме. Та же роль возлагается на контакты теплового реле Р, которые в нормальном состоянии замкнуты, но разрывают цепь в случае возникновения аварийной ситуации на электрической машине.

Запуск происходит за счет включения кнопки Пуск, после чего по катушке КМ начинает протекать электроток это приводит к включению силовых контактов КМ и подаче питания на нагрузку. Одновременно происходит шунтирование кнопки запуска блок контактами БК, которые замыкают цепь после возвратного движения кнопочного устройства. В штатном режиме схема отключается за счет кнопки Стоп.

Второй вариант ввода в работу электромагнитного пускателя – это схема подключения с нулевым проводником.

Рис. 5. Схема подключения с нейтральным проводником

Как видите, принцип действия полностью идентичен с описанным ранее вариантом. Кардинальное отличие от предыдущего способа подключения электромагнитного пускателя – это способ подачи питания. В этой схеме пускатель подключен не между фазами, между фазой C и нулем N.

Наиболее сложным вариантом является реверсивная схема подключения электромагнитного пускателя.

Рис. 6. Реверсивная схема включения пускателя

Как видите на рисунке, для ее реализации применяются специальные реверсивные магнитные пускатели с двумя катушками, первая из которых запускает вращение мотора вперед, а вторая, в обратную сторону. Отличительной особенностью такой схемы является электрическая блокировка, состоящая из пары контактов от кнопок вперед КМ1 и назад КМ2, которые блокируют включение противоположного движения без предварительного отключения электрической машины. В остальном принцип действия реверсивного устройства идентичен базовому.

Уход в процессе эксплуатации

В ходе эксплуатации для каждого электромагнитного пускателя периодически осуществляется проверка его технического состояния.

Обязательно нужно обращать внимание на:

  • появление загрязнений, пыли, грязи, строительного мусора и т.д. – их удаляют и обеспечивают чистоту поверхности, контактных групп;
  • целостность корпуса, клемм, катушки – при выявлении трещин или других дефектов электромагнитный пускатель или его отдельные части подлежат замене;
  • состояние пружин, работоспособность кнопок электромагнитного пускателя – проверяется способность отбрасывания и другие функции;
  • состояние тепловой защиты – осматривается место, где устанавливается реле, измерительного датчика и т.д.
Читайте также:  Книжка малышка про спорт своими руками

Проверка рабочих параметров электромагнитного пускателя, его переходного сопротивления выполняется специальными приборами, которые имеют соответствующую поверку и предел измерений.

В современных электрических схемах широко применяются защитные контакторы. Они предохраняют двигатели и другие, например, нагревательные приборы от перегрузок и резких падений напряжения. Также контакторы предназначены для стационарного подключения и отключения однофазного и трехфазного оборудования. Одним из таких контакторов является пускатель магнитный ПМЕ-211.

Пускатель магнитный

Пускатель магнитный ПМЕ-211 состоит из разборного корпуса, электромагнита, контактов, как силовых, так и вспомогательных (блокировочных). В нижней части корпуса из карболита находится сердечник со втягивающей катушкой. Сверху расположены силовые контакты, которые соединены с подвижным сердечником и при срабатывании катушки втягиваются, при этом замыкая силовые контакты. Пускатель магнитный ПМЕ-211 имеет также вспомогательные контакты, или, как их еще называют, блокировочные контакты. При замыкании силовых они блокируют питание на катушке контактора. Тем самым исключается необходимость постоянного нажатия на кнопку пуска.

Сверху пускатель магнитный имеет защитную крышку, которая прикрывает силовые контакты. Сердечник состоит из слоев специальной ферромагнитной стали, соединенных между собой в единую форму.

Производство

Производство магнитных пускателей ПМЕ-211 в России почти закончилось. В связи с тяжелыми экономическими условиями производство контакторов почти прекратилось, тем не менее за последние пять лет удалось восстановить несколько конкурентоспособных заводов и получилось загрузить работой их на полную мощность. Данный вид пускателя постепенно начинает заменяться на более дешевые и простые в обслуживании контакторы как отечественного, так и иностранного производства.

Корпус пускателя изготавливают из карболита, данный материал не проводит электрического тока и является наиболее удобным. Сердечник, как описывалось выше, состоит из пластинок из электротехнической стали, изолированных друг от друга, чтобы избежать возникновения вихревых токов. Поверхности прилегания и соприкосновения делают гладкими, чтобы избежать гудения.

Силовые и вспомогательные контакты выполнены из латуни с серебряными напайками. Серебро помогает избежать дуги, а также имеет большую устойчивость при ударах во время включения и отключения.

Втягивающая катушка магнитного пускателя ПМЕ-211 изготавливается из медного провода. Диаметр провода и число витков варьируется в зависимости от номинального напряжения, при котором будет работать данный пускатель. Следует помнить, что на катушку необходимо подавать напряжение соответствующее номинальному, в противном случае катушка выйдет из строя так же, как и сам контактор.

Пускатель на 220 В

Пускатель магнитный ПМЕ-211 на 220 В имеет втягивающую катушку с номинальным напряжением питания 220 В. Это значит, что напряжение сети управления тоже должно быть 220 В. В основном такие пускатели используют для управления подключением маломощных двигателей и нагревательных приборов, которые при подключении требуют использование контактора.

Пускатель на 380В

Пускатель магнитный ПМЕ-211 на 380 В имеет втягивающую катушку рассчитанную на напряжение питания 380 В. Причем подача меньшего напряжения может вывести из строя пускатель. Пускатели с таким напряжением применяют для управления в оборудовании более мощным, чем при напряжении 220 В.

Особенности подключения

Подключение магнитного пускателя ПМЕ-211 производят в зависимости от требований схемы и технических условий. Одиночное подключение проводится при условии того, что нет необходимости реверсивного переключения. Обычно одиночное подключение используют для управления нагревательными элементами.

При реверсивном подключении два спаренных магнитных пускателя соединяют проводами так, что при нажатии на кнопку пуска двигатель начинает вращаться в определенную сторону в зависимости от того какой пускатель сработает. Данная схема подключения называется реверсивной и широко применяется при сборке схем управления на почти всем машиностроительном оборудовании. При этой схеме блокирующие контакты защищают от одновременного срабатывания магнитных пускателей, что может вывести из строя двигатель.

Зачастую магнитные пускатели подключаются в паре с тепловым реле предохраняющим оборудование от перегрузок и пропадания одной фазы. Тепловое реле конструктивно выполняют так, чтобы было возможно механическое соединение с магнитным пускателем. Реле имеет биметаллическую пластину, которая при увеличении тока нагревается и изгибаясь отключает питание катушки пускателя, тем самым разрывая силовую цепь.

В схемах управления с магнитными пускателями применяют для защиты также предохранители и автоматические выключатели. Тепловые реле имеют специальную регулировку тока срабатывания. С течением времени необходимо добавлять значение, так как оборудование имеет износ и необходима данная регулировка, чтобы избежать постоянного срабатывания, но не стоит забывать про то, что с увеличением тока срабатывания можно вывести из строя двигатель.

Применение

Почти в любой электрической схеме используют магнитные пускатели. Они применяются для управления асинхронными двигателями почти в любом оборудовании, а также их используют для управления подключением мощными нагревательными приборами. Магнитные пускатели просты в обслуживании, что делает их распространенными в использовании, так как двигатели и нагревательные элементы более дорогие, их необходимо защищать от выхода из строя.

Ссылка на основную публикацию
Пластиковые накладки на стены
Отбойная доска - это надежная и практичная защита стен от стульев и столов, периодически передвигаемых по помещению, ударов дверных ручек,...
Печь птоу 2500 порядовка
§ 30. Печи ПТО-2500 и ПТОУ-2500 Конструктивные параметры: печь толстостенная; конвективная система - последовательная; Vп=1,08 м 3 ; Va =...
Пластиковые накладки на стены
Отбойная доска - это надежная и практичная защита стен от стульев и столов, периодически передвигаемых по помещению, ударов дверных ручек,...
Плиты декоративные под бетон
панель мдф стеновая камень бутан 1220х2440х6,2 мм Стеновая панель HPL пластик VEROY PREMIUM Гранит Бьянко. Loft-beton - декоративная стеновая бетонная...
Adblock detector